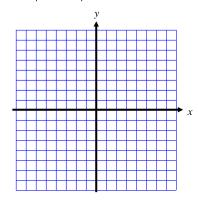
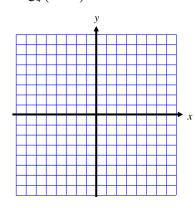

Pre-Calculus First Semester Review

NON CALCULATOR

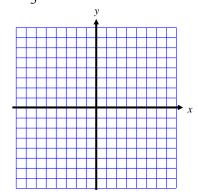

For question 1-6, find following:

- (a) Identify the parent function.
- (b) State the transformation rule or describe the transformation.
- (c) Graph the function including key points and any asymptotes.

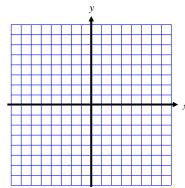
[1.5] 1.
$$f(x) = \frac{1}{x+2} - 3$$

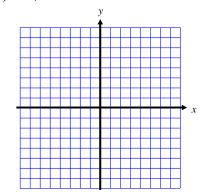


[1.5] 2.
$$f(x) = -3|2x+6|+1$$



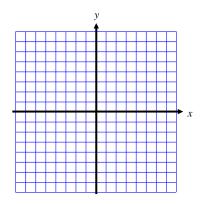
[1.5] 3.
$$f(x) = \log_4(x-2)$$




[1.5] 4.
$$f(x) = -\frac{1}{3}x^3 + 4$$

[1.5] 5.
$$f(x) = 3^{x+2} - 1$$

[1.5] 6.
$$f(x) = 3\sqrt{4-x}$$



For questions 7-8, find the vertex (show work). Then graph the function including at least three points.

[1.5] 7.
$$f(x) = -2(x+1)^2 + 4$$

[1.5] 8.
$$f(x) = x^2 + 8x + 11$$

Solve. Check for extraneous roots. Write your answers in interval notation where appropriate.

[P3] 9.
$$2(5-2y)-3(1-y) \ge y+1$$

[P5] 10.
$$-3 \le 1 - 2x < 7$$

[P5] 11.
$$(3x-4)^2-8=18$$

[P5] 12.
$$|-x+4|-3>7$$

[P5] 13.
$$\frac{3x}{x+1} + \frac{5}{x-2} = \frac{15}{x^2 - x - 2}$$

[P5] 14.
$$4x^2 - 7x + 5 = 0$$

[P1] Simplify. Express your answer without negative exponents.

15.
$$\frac{\left(uv^{-2}\right)^{-3}}{u^{-5}v^2}$$

$$16. \ \frac{4x^3y}{x^2y^3} \cdot \frac{3y^2}{2x^2y^4}$$

[P4] 17. Write the equation of a line a) parallel to **and** b) perpendicular to 5x - y = 7 and passing through the point (3, -4).

[1.2] Find the domain. Express the answer in interval notation.

18.
$$f(x) = \log_3(2x+5)$$

19.
$$f(x) = \frac{\sqrt{7-x}}{x+4}$$

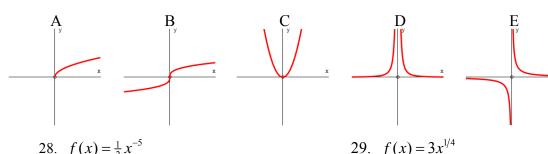
[1.2] Prove algebraically whether the function is even, odd, or neither.

20.
$$f(x) = 3x^3 - 2x$$

21.
$$f(x) = -2x^4 - 4x + 7$$

[1.4] Given $f(x) = (x-4)^2$, g(x) = 2x - 3 and $h(x) = \sqrt{x+5}$. Find and simplify the answer.

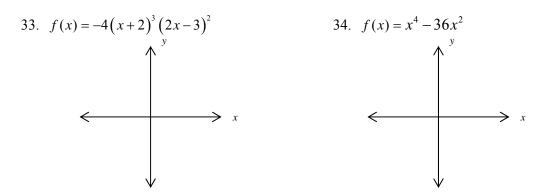
22.
$$(f \circ h)(4)$$


23.
$$h(g(x))$$

24.
$$(g-f)(x)$$

25.
$$(fg)(x)$$

- [1.4] 26. Given: $f(x) = x^3 + 2$. Find $f^{-1}(x)$.
- [1.4] 27. **Verify** that f and g are inverses of each other: f(x) = 2x + 8 and $g(x) = \frac{x 8}{2}$.


[2.2] For questions 28 & 29, identify the letter of the graph below that best matches the given function.

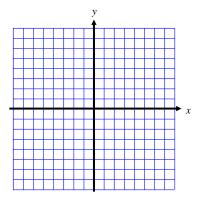
[2.3&2.7] Describe the end behavior of the polynomial or rational function using **limit** notation.

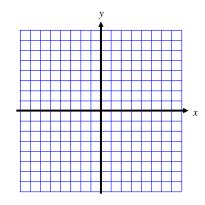
30.
$$f(x) = -2x^3 + 4x^2 + 1$$
 31. $f(x) = 3x^4 + x^2 - 5$ 32. $g(x) = \frac{2x^3 + 6x^2 - x + 12}{x^2 + 2}$

- [2.3] For each function below...
 - a) Tell the degree.
 - b) Find the zeros of the function with their multiplicities.
 - c) Sketch a graph of the function including zeros, multiplicities and end behavior.

[2.5] 35. Write in
$$a + bi$$
 form: $\frac{2+4i}{3-2i}$

[2.6] Find the zeros of the function **and** write the function as a product of linear and irreducible quadratic factors all with real coefficients.


36.
$$f(x) = x^3 - x^2 - x - 2$$
, given that $x = 2$

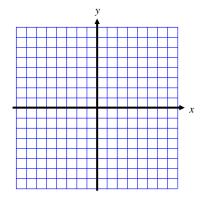

37.
$$f(x) = x^4 + 3x^3 - 3x^2 + 3x - 4$$
, given that $x = 1$ and $x = -4$

[2.7] Find (if it exists) the a) equations of any horizontal or slant asymptote, b) equations of any vertical asymptote(s) and coordinates of any holes, c) *x*-intercept and *y*-intercept, and d) graph the function including additional points in each region of the domain.


38.
$$g(x) = \frac{4x^2 - x - 5}{x^2 - 2x - 3}$$

39.
$$g(x) = \frac{-2x}{x^2 - x - 6}$$

[2.7] 40. Use the rational function below, along with the listed attributes, to graph the function. Include additional points in each region of the domain.



SA:
$$y = x - 1$$

VA: x = 1

x-intercepts: (3, 0) and (-1, 0)

y-intercept: (0, 3)

[2.8] Solve questions 41-43 using as sign chart.

41.
$$12x^3 - 14x^2 - 6x \ge 0$$

41.
$$12x^3 - 14x^2 - 6x \ge 0$$
 42. $\frac{2x+1}{x^2 + 2x - 3} \le 0$

43.
$$\frac{2}{x+1} - \frac{3}{x-5} > 0$$

[3.3] 44. Simplify

c)
$$\ln \frac{1}{e}$$

d)
$$\log \sqrt[4]{10}$$

e)
$$\log_9 \frac{1}{27}$$

f)
$$3^{\log_3 7}$$

[3.5] 45. Solve.

a)
$$\log x = -2$$

b)
$$\log_3(2-3x) + 5 = 9$$

c)
$$\log(x^2 + 21x) = 2$$

d)
$$\log_2(x-1) - \log_2(2x-3) = 3$$

Graphing Calculator Allowed

[P.5] Solve by graphing.

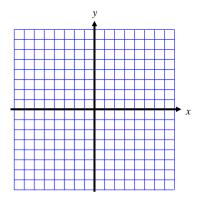
46.
$$3x - 2 = \sqrt{x + 4}$$

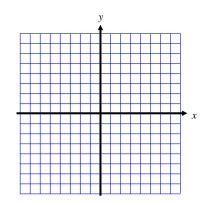
47.
$$0 = x^3 + x^2 - 5x + 3$$

[1.2] 48. Find all a) local maxima and minima and b) identify intervals on which the function is increasing and decreasing.

$$f(x) = x^3 + 2x^2 - 6x$$

[1.2] Graph the function and tell whether or not it has a point of discontinuity at x = 0. If there is a discontinuity, tell whether it is removable or non-removable.


$$49. \quad f(x) = \frac{|x|}{x}$$


$$50. \ h(x) = \frac{x^2 + x}{x}$$

[1.3] Graph the piecewise-defined function. State whether the function is continuous or discontinuous at x = 0.

51.
$$f(x) = \begin{cases} x & \text{if } x \le 0 \\ x^2 & \text{if } x > 0 \end{cases}$$

[1.3] Using the twelve basic parent functions provided in the box, <u>list the equation</u> of the function(s) that fit the description given.

$$f(x) = x$$
 $f(x) = \ln x$ $f(x) = e^x$ $f(x) = x^2$ $f(x) = |x|$ $f(x) = x^3$ $f(x) = \sqrt{x}$ $f(x) = \frac{1}{x}$ $f(x) = \sin x$ $f(x) = \cos x$ $f(x) = int(x)$ $f(x) = \frac{1}{1 + e^{-x}}$

- 53. Bounded (3 functions).
- 54. Increasing on the entire domain (6 functions).
- 55. Even (3 functions).
- [1.6] 56. The height of a right circular cylinder equals its diameter. Write the volume of the cylinder as a function of its radius.
- [1.6] 57. Sue invested \$10,000, part at 3.6% annual interest and the balance 7.8% annual interest. How much is invested at each rate if a 1-year interest payment is \$667.02?

[1.6] 58. The chemistry lab at the University of Hardwoods keeps two acid solutions on hand. One is 20% acid and the other is 35% acid. How much 20% acid solution and how much 35% acid solution should be used to prepare 25 liters of a 26% acid solution?

[2.1] 59. Write an equation for the linear function f with f(-3) = -2 and f(4) = -8.

- [2.2] 60. Write the statement as a power function equation and answer the question. The electrical resistance of a wire varies directly as its length and inversely as the square of the diameter of the wire.
 - a) Write a model for this situation.
 - b) Suppose 50 mm of a wire of diameter 3 mm has a resistance of 8 Ω . Use this information to find the constant k.
 - c) What is the resistance of 40 mm of the same type of wire if the diameter is 4 mm?
- [2.1] 61. The table below gives the weight and pulse rate of selected mammals.
 - a) Write a power regression equation and state the power and constant of variation.

Mammal	Body Weight	Pulse Rate (beats/min)
Rat	0.2	420
Guinea Pig	0.3	300
Rabbit	2	205
Small Dog	5	120
Large Dog	30	85
Sheep	50	70
Human	70	72

- b) Use the regression equation to determine the pulse rate of a human weighing 12 pounds.
- [2.4] Divide. Write a summary statement in polynomial form. Determine if the first polynomial is a factor of the second polynomial.

62.
$$2x+1$$
; $6x^3-5x^2+9$

63.
$$x-5$$
; $x^3-4x^2-7x+10$

[2.4 & 2.6] Find a polynomial equation with the given zeros. Express function in standard form.

64.
$$\frac{1}{3}$$
, -2, 5

65.
$$-1, 2-i$$

- [3.2] 67. Fruit flies are placed in a container with a banana and yeast plants. Suppose the fruit fly population after t days is given by $P(t) = \frac{230}{1 + 56.5e^{-0.37t}}$.
 - a) What is the maximum number of fruit flies the container can hold?
 - b) How many fruit flies were originally placed in the container?
 - c) How long does it take for the number of fruit flies to reach one-half of the maximum flies that the container can hold?
- [3.2] 68. Write the equation of the logistic function of the form $f(x) = \frac{c}{1 + ae^{-bt}}$ whose initial population is 16, limit to growth is 128 and that passes through the point (5, 32).

For questions 69-70, write a model for the situation. Be sure to clearly define your variables. Then use your model to answer the question. Solve algebraically AND graphically.

[3.2] 69. Shan invested \$100 at 3.5% interest compounded monthly. How long will it take for her investment to double?

[3.2] 70. A radioactive isotope decays at a rate of 3% per day. A scientist has an initial amount of 50 g. Determine approximately how many days it will take for half the isotope to decay.

[3.4] 71. Rewrite the expression as a sum or difference of multiple logarithms.

a)
$$\log_3(a^2b)$$

b)
$$\log_3 \frac{\sqrt{a}}{bc}$$

[3.4] 72. Express as a single logarithm. Simplify.

a)
$$2\log r - \log q + 3\log w$$

b)
$$\frac{1}{3} \log 27 - 2 \log 4$$

[3.5] 73. Solve algebraically and check graphically.

a)
$$2(5)^x = 26$$

b)
$$4 + 3e^{x-5} = 157$$

c)
$$\ln\left(\frac{x}{5}\right) = -0.2$$

d)
$$5 = 21 - 2\log_3(x - 7)$$