2.2 POWER FUNCTIONS WITH MODELING

Learning Targets:
1. Identify a power function.
2. Model power functions using the regression capabilities of your calculator.
3. Understand the difference between “direct variation” and “inverse variation”.
4. Use power functions to solve word problems.

In this section we will study power functions.

A power function looks like ________________,
where \(a = \) _______________________, and \(k = \) _______________________.

We say that \(f(x) \) ______________ as the \(a \)th power of \(x \), or that \(f(x) \) is ______________________ the \(a \)th power of \(x \).

If \(a \) is ______________________ we say that \(f(x) \) varies ______________________ with the \(a \)th power of \(x \).

Example 1: Determine if the function is a power function. For those that are not, explain why not.

a) \(f(x) = -3x^4 \)
 b) \(f(x) = \sqrt[3]{8x^5} \)
 c) \(g(x) = 7 \cdot 2^x \)
 d) \(h(x) = 2x^{-5} \)

Example 2: The volume \(V \) of a sphere varies directly as the cube of the radius \(r \). When the radius of a sphere is 6 cm, the volume is 904.779 cm³. What is the radius of a sphere whose volume is 268.083 cm³?

Example 3: The force of gravity \(F \) acting on an object is inversely proportional to the square of the distance \(d \) from the object to the center of the earth. Write an equation that models this situation.

Example 4: Velma and Reggie gathered the data in the table below using a 100-watt light bulb and a Calculator-Based Laboratory(CBL) with a light-intensity probe.

<table>
<thead>
<tr>
<th>Distance(m)</th>
<th>Intensity(W/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>7.95</td>
</tr>
<tr>
<td>1.5</td>
<td>3.53</td>
</tr>
<tr>
<td>2.0</td>
<td>2.01</td>
</tr>
<tr>
<td>2.5</td>
<td>1.27</td>
</tr>
<tr>
<td>3.0</td>
<td>0.90</td>
</tr>
</tbody>
</table>

a) Use your calculator to find the power regression model of the data.

b) Describe the relationship between the intensity and distance modeled with the equation in part a.

c) Use the regression model from part a to predict the intensity of an object 2.75 meters away.
2.1 Linear and Quadratic Functions and Modeling

2.1 LINEAR AND QUADRATIC FUNCTIONS AND MODELING

Learning Targets:
1. Understand what a polynomial function looks like.
2. Understand that Average Rate of Change implies slope between two points.
3. Model Linear functions using function notation and the regression capabilities of your calculator.
4. Find the vertex and graph a quadratic function in standard, intercept, and vertex forms.
5. Model Quadratic functions in vertex form.
6. Use the projectile motion model to find the highest point a projectile reaches, and when it reaches that point.

The rest of Chapter 2 deals with polynomial functions and you will learn about various aspects of these types of functions. Our first goal is to define polynomial functions and then to identify which functions are polynomials.

Definition of a Polynomial Function
A function $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0$, where $n = \ldots$ and n is a \ldots.

Example 1: Which of the following functions are polynomial functions? For those that are, state the degree and leading coefficient. For those that are not polynomials state why not.

- $f(x) = 3x - 5x^2$
- $h(x) = \sqrt{x^2 - 4}$
- $s(t) = 2t^4 + 5t^3$
- $g(x) = 6$
- $k(x) = 4x^2 - 5$

For the remainder of this section we will deal only with functions whose degree is less than or equal to 2.

Polynomials of degree 0 are called \ldots. Polynomials of degree 1 are called \ldots. Polynomials of degree 2 are called \ldots.

Example 2: The table below shows the relationship between the number of Calories and the number of grams of fat in 9 different hamburgers from various fast-food restaurants.

<table>
<thead>
<tr>
<th>Calories</th>
<th>720</th>
<th>530</th>
<th>510</th>
<th>500</th>
<th>305</th>
<th>410</th>
<th>440</th>
<th>320</th>
<th>598</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat (g)</td>
<td>46</td>
<td>30</td>
<td>27</td>
<td>26</td>
<td>13</td>
<td>20</td>
<td>25</td>
<td>13</td>
<td>26</td>
</tr>
</tbody>
</table>

a) Find the linear regression model for this data.

b) According to your model, how much fat is in a hamburger with 475 calories? Do NOT round!!

b) In the context of this problem, what does the slope mean?

Example 3: Find the vertex of the quadratic function $f(x) = 3(x + 5)^2 - 2$ then graph the quadratic function.
2.1 Linear and Quadratic Functions and Modeling

Many of us know to use \(x = -\frac{b}{2a} \) to find the vertex when in standard form \(y = ax^2 + bx + c \). Let’s see why this works…

Example 4: Start with the function \(f(x) = a(x-h)^2 + k \).

a) Multiply to expand \((x-h)^2\).

b) Distribute the \(a \)

c) Compare the coefficients of \(x^2 \) and \(x \) to \(a \) and \(b \) from the standard form equation.

Example 5: Find the vertex of the quadratic function \(f(x) = 2x^2 - 6x + 11 \) and then graph it.

Modeling Quadratic Functions

- In previous courses, we have used quadratic functions to model projectile motion. We will continue to use quadratics in this manner through applications of the vertex and the zeros.
- There are many other situations where we use quadratic functions to model real world applications. One such application is shown below.

Example 6: The Welcome Home apartment rental company has 1600 units available, of which 800 are currently rented at $300 per month. A market survey indicates that each $5 decrease in monthly rent will result in 20 new leases.

a) Determine a polynomial function \(R(x) \) that models the total rental income realized by Welcome Home, where \(x \) is the number of $5 decreases in monthly rent.

b) Find a graph of \(R(x) \) for the rent levels between $175 and $300 (that is \(0 \leq x \leq 25 \)) that clearly shows a maximum for \(R(x) \). What rent will yield Welcome Home the maximum monthly income?
2.3 POLYNOMIAL FUNCTIONS OF HIGHER DEGREE WITH MODELING

Learning Targets:
1. Be able to describe the end behavior of any polynomial using limit notation.
2. Be able to find the zeros of a polynomial by factoring.
3. Be able to find the zeros of a polynomial using your graphing calculator.
4. Understand how the multiplicity of a zero changes how the graph behaves when it meets the x-axis.
5. Use end behavior and multiplicity of zeros to sketch a polynomial by hand.
6. Use the regression capabilities of your calculator to model a cubic and quartic equation.

Our focus today is on polynomials of degree 3 (cubic), degree 4 (quartic), or higher.

End behavior describes what happens to the y-values of the function as x approaches positive or negative infinity as we learned in lesson 1.2. If you can remember the graphs of \(y = x, y = -x, y = x^2, \) and \(y = -x^2, \) then you can remember the end behavior of ALL polynomial functions using the “leading coefficient” and highest power.

<table>
<thead>
<tr>
<th>Positive Coefficient</th>
<th>Even Power</th>
<th>Odd Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lim_{x \to -\infty} f(x) =)</td>
<td>(\lim_{x \to \infty} f(x) =)</td>
<td>(\lim_{x \to -\infty} f(x) =)</td>
</tr>
<tr>
<td>(\lim_{x \to -\infty} f(x) =)</td>
<td>(\lim_{x \to \infty} f(x) =)</td>
<td>(\lim_{x \to -\infty} f(x) =)</td>
</tr>
</tbody>
</table>

Example 1: Describe the end behavior of the polynomial function using \(\lim_{x \to -\infty} f(x) \) and \(\lim_{x \to \infty} f(x). \) Confirm graphically.

a) \(f(x) = 3x^6 - 5x + 3 \)
b) \(g(x) = -x^7 + 7x^2 - 8x + 9 \)

When the end behavior of a function goes to positive or negative infinity, we will write \(\lim_{x \to -\infty} f(x) = \infty \) or \(-\infty, \) but since infinity is not a real number, in Calculus we say the limit does not exist.

Zeros of Polynomial Functions

The zeros of a function are the x values that make \(f(x) = 0. \) These x values are called the x-intercepts when they are real numbers. We can use factoring to find these zeros algebraically.

Example 2: Find the zeros of the function algebraically. Support graphically.

a) \(f(x) = x^3 - 16x \)
Definition: Multiplicity of zeros:
The multiplicity of each zero is the number of times the factor occurs in the factored form of the polynomial.

Example 3: List each zero and state its multiplicity. Then, graph each function on your calculator. What do you notice?

a) \(f(x) = x(x - 3)^2 \)

b) \(h(x) = (x + 1)(x - 2)^2(x - 4)^3 \)

- At a zero with EVEN multiplicity, the graph of the function will ________________________________.
- At a zero with ODD multiplicity, the graph of the function will ________________________________.

Putting it all together

Example 5: State the degree and list the zeros of the polynomial function. State the multiplicity of each zero and whether the graph crosses the \(x \)-axis at the corresponding \(x \)-intercept. Using what you know about end behavior and the zeros of the polynomial function, sketch the function.

a) \(f(x) = x^4 - 25x^2 \)

Degree:

Zero(s) & Multiplicity:

End Behavior:

b) \(h(x) = -3(x - 2)(x + 7)^2 \)

Degree:

Zero(s) & Multiplicity:

End Behavior:
2.4 Real Zeros of Polynomial Functions

2.4 REAL ZEROS OF POLYNOMIAL FUNCTIONS

Learning Targets:
1. Use long division to find factors of a polynomial.
2. Use synthetic division to find linear factors of a polynomial.
3. Apply the remainder theorem to find the function value at a given value of \(x \).
4. Apply the factor theorem to write the factors of a polynomial.

In the last section, we found the zeros of a polynomial by factoring. In this section we explore different ways to obtain those factors. We will focus on long division and synthetic division which should be review from previous courses.

Example 1: Divide.

\[
\frac{2x^4 - 3x^3 + 5x - 1}{x - 2}
\]

As long as you are dividing by a term that looks like \(\boxed{\ldots} \), you can also use synthetic division.

Example 2: Divide using synthetic division.

\[
(2x^4 - 3x^3 + 5x - 1) \div (x - 2)
\]

Another way to find the remainder is to evaluate the function using a specific value.

Example 3: Evaluate \(f(x) = 2x^4 - 3x^3 + 5x - 1 \) when \(x = 2 \). What do you notice?

The Remainder Theorem

If a polynomial is divided by \((x - c)\), then the remainder is the same as the function value \(f(c) \).

When a polynomial is divided by \((x - c)\), we can find the remainder using

a) ________________________________

b) ________________________________

c) ________________________________
Relating Remainders to Factors

To determine why the remainder is so important, let’s review division of numbers.

When we divide and the remainder is zero, then the value we divided by, as well as the answer, are called factors. For example, when 20 is divided by 5, the remainder is zero. We call 5 a factor of 20. The answer 4 is also a factor of 20.

The same can be said for polynomials…if a polynomial is divided by \((x - c)\) and the remainder is zero, then \((x - c)\) is a factor of the polynomial and so is the answer obtained from the division.

Relating Factors to Zeros

We also need to understand how the factors of a function are related to its zeros. For example, consider the function \(f(x) = x^3 + 7x + 10\). We can easily factor to get \(f(x) = (x + 5)(x + 2)\) and we know the zeros are \(x = -5\) and \(-2\).

The Factor Theorem

For a polynomial function, \(x = c\) is a zero of a function if and only if \((x - c)\) is a factor of the function.

A Quick Summary ... The following statements are all equivalent:

1. \(x = c\) is a solution (or root) of the equation \(f(x) = 0\).
2. When \(f(x)\) is divided by \((x - c)\), the remainder equals 0.
3. \(c\) is a zero of the function \(f(x)\).
4. \(c\) is an \(x\)-intercept of the graph of \(f(x)\) if \(c\) is a real number.
5. \((x - c)\) is a factor of \(f(x)\).

Example 4: If 5 is a zero of \(f(x)\), give four equivalent statements that you know are true.

Example 5: Completely factor \(f(x) = 3x^3 + 4x^2 - 5x - 2\). Use the graph below and synthetic division.
Rational Zeros Theorem

Let \(f(x) \) be a polynomial function with integral coefficients. The only possible rational zeros of \(f(x) \) are:

\[
\frac{p}{q},
\]

where \(p \) is a divisor of the constant term and \(q \) is a divisor of the leading coefficient.

Example 6: Given the function: \(f(x) = 6x^3 - 29x^2 - 6x + 5 \)

a) List all possible rational roots \(\frac{p}{q} \) … these are the only possible rational zeros of the function.

b) Graph the function to see which are the zeros of \(f(x) \).
 … and realize how nice your teachers are for NOT making you try ALL the numbers in part c.

c) Using the graph from part b to get you started; find the zeros of \(f(x) \) algebraically.
 … (use synthetic division and/or factoring)