4.1 Angles and Their Measures

Learning Targets

- 1. Draw an angle in Radians by thinking in radians (without converting to degrees).
- 2. List the reference angle of the radian angle.
- 3. Convert Degrees \rightarrow Radians and vice versa.
- 4. Apply arc length formulas in Radians when given a radian angle or a degree angle.
- 5. Convert linear speed to angular speed & vice versa
- 6. Relate definitions of bearing and heading to real world problems.
- 7. Convert DMS to decimal degrees and vice versa

There are multiple ways to measure angles: degrees, revolutions, bearings and radians

- **Degrees:** From Geometry: straight angle = 180 degrees and a circle = 360 degrees
- **Revolutions:** 1 revolution = 1 full turn around a circle
- Radians: An angle of 1 radian is defined to be the angle at the center of a circle which spans an arc of length equal to the radius of that circle.

Standard Position: For degree angles, revolutions and radian angles, we draw the angles with their initial side along the positive *x*-axis of the coordinate axes. The terminal (end) side of the angle is then measured in a counterclockwise direction. NOTE: Bearings work differently and will be covered in class.

Reference Angles: The acute angle between the terminal side of an angle and the *x*-axis.

Example 1: Draw the following Radian angles. Then list their reference angle.

a)
$$\frac{\pi}{2}$$
 b) $\frac{11\pi}{6}$ c) $\frac{4\pi}{3}$ d) 2.9

Example 2: Convert from degrees to radians or radians to degrees:

a) 200° b)
$$\frac{7\pi}{8}$$
 radians

ArcLength: The length of a portion of the circumference of a circle is $S = \theta r$ where S is the arc length, θ is the angle measured in radians, and r is the radius of the circle.

Example 3: Find the length of an arc. Express the answer in terms of π

a)
$$\theta = \frac{5\pi}{6}$$
; $r = 4$ cm b) $\theta = 125^{\circ}$; $r = 1.5$ mm

Angular and Linear Motion

- > Angular Speed: How fast something is spinning.
- ▶ Linear Speed: How fast something is travelling in one direction.

Example 4: A turntable rotates at 50 revolutions per minute. What is its angular speed in radians per second?

Learning Targets

- 1. Know and apply the six trigonometric ratios
- 2. Solve right triangles using the six trig. ratios
- 3. Know the ratios of the sides of the 30-60-90 special right triangle
- 4. Know the ratios of the sides of the 45-45-90 special right triangle
- 5. Apply the ratios of the special right triangles to real life application questions.

Next let's put our angles inside triangles...specifically right triangles.

***** Three Basic Trigonometric Ratios

 $\sin \theta = \frac{\text{side opposite } \theta}{\text{hypotenuse}}, \ \cos \theta = \frac{\text{side adjacent to } \theta}{\text{hypotenuse}}, \ \tan \theta = \frac{\text{side opposite } \theta}{\text{side adjacent to } \theta}$

- Remember the ratios are used on an acute angle.
- We memorized _____.

Example 1: Using the triangle at the right, find all six trigonometric functions of the angle θ .

Example 2: Given tan $\theta = \frac{5}{12}$, find the remaining trigonometric functions.

Special Right Triangles:

#1: 45 – 45 – 90 Right Triangle (MEMORIZE THESE RATIOS)

a) If AC = 1, and $m \measuredangle A = 45^{\circ}$, solve for the remaining parts of the triangle.

b) Find the sine, cosine and tangent values of 45°.

#2: 30 -60 – 90 Right Triangle (MEMORIZE THESE RATIOS)

- a) ΔABC is equilateral, so each angle is _____
- b) Draw the altitude of the triangle from A to \overline{BC} . Call the point of intersection D.
- c) Therefore, $m \measuredangle BAD =$ _____.
- d) Suppose AB = 2. Solve for the remaining parts of ΔBAD .

e) Find the sine, cosine and tangent values of 30° and 60° .

Example 4: A ladder is extended to reach the top floor of an 84 foot tall burning building. The fire fighters see someone who needs rescuing in a window 8 feet below the roof. How far should the ladder be extended to reach the roof if the ladder must be placed at the optimum operating angle of 60°?

4.3 Trig. Extended: The Circular Functions

DAY 1:

SohCahToa works well for acute angles; but what if we need angles 90° or larger? What if we need negative angles?

Standard Position: By placing angles in standard position, we can extend the terminal sides past the first quadrant. Remember each of the following facts...

- > Positive Angles are measured counterclockwise.
- Negative Angles are measured clockwise.
- \blacktriangleright Reference Angles are still the acute angle measured to the *x*-axis (just as in lesson 4.1)

Coterminal Angles: Angles with the same initial and terminal sides, but different measures. The measures differ by integral multiple(s) of 2π or 360° .

Example1: Find and draw one positive and one negative angle that is co terminal with the given angle.

Trigonometric Functions – Redefined: Let θ be any angle in standard position and let P(x, y) be any point on the terminal side of the angle. Then *r* is the distance from the origin to P(x, y) or the radius of a circle and $r = \sqrt{x^2 + y^2}$. The six Trigonometric Ratios are...

 \rightarrow Notice if r = 1, then we have a "Unit Circle" which is a circle with radius 1.

 $\sin \theta = \cos \theta = \tan \theta =$

Example 2: Find the six trigonometric ratios of θ whose terminal side passes through the given point.

a) (3,4) b) (3,-4)

A Shortcut for the Signs of Trigonometric Functions:

Now we know the trig functions when given a point. We can also predict the ______ of the trig functions if we know the ______. But how do we find the trig functions when given an angle?

DAY 2:

Quadrantal Angles: Any angle in standard position whose terminal side is on the x-axis or the y-axis.

Example 3: Find the exact value of each given trig function using the given angle.

a) $\sin \pi$ b) $\cos (-360^{\circ})$

c)
$$\csc\left(\frac{3\pi}{2}\right)$$
 d) $\sec\left(\frac{-11\pi}{2}\right)$

Remember that you cannot divide by zero, so sometimes	ć	:	are
undefined!			

Non – Quadrantal Angles: Any angle in standard position whose terminal side is NOT on the *x*-axis or the *y*-axis. To find a trig. ratio for a non-quadrantal angle, we need three things:

1. _____: We identify the quadrant of the angle according to its terminal side. The quadrant tells us the sign of the trigonometric ratio.

2. _____: Reference triangles are right triangles created by drawing a perpendicular from the terminal side of a non-quadrantal angle to the *x*-axis. The reference angles we used in Lesson 4.1 are inside this right triangle and for our purposes here, the reference angle will always be a multiple of the angles found in the special right triangles from Lesson 4.2.

3. _____: Remember we memorized these ratios (or the sine, cosine and tangent of these angles) in lesson 4.2.

Example 4: Draw the given angle and list the quadrant in which it lies. List the measure of θ_{ref} . Then, evaluate the indicated trig value.

a)
$$\csc(-60^{\circ})$$
 b) $\cos\left(\frac{7\pi}{4}\right)$

c) $\sin\left(\frac{-5\pi}{6}\right)$ d) $\tan 120^{\circ}$

Now you have all the pieces to solve any puzzle...

Example 5: Find $\cos \theta$ and $\cot \theta$ if $\sin \theta = \frac{1}{4}$ and $\tan \theta < 0$.