2.3 POLYNOMIAL FUNCTIONS OF HIGHER DEGREE WITH MODELING

Learning Targets:

1. Be able to describe the end behavior of any polynomial using limit notation.
2. Be able to find the zeros of a polynomial by factoring.
3. Be able to find the zeros of a polynomial using your graphing calculator.
4. Understand how the multiplicity of a zero changes how the graph behaves when it hits the x-axis.
5. Use end behavior and multiplicity of zeros to sketch a polynomial by hand.
6. Use the regression capabilities of your calculator to model a cubic and quartic equation.

Our focus today is on polynomials of degree 3 (cubic), degree 4 (quartic), or higher.
When we looked at horizontal asymptotes, we talked about end behavior. End behavior is the behavior of the function (the y - values) as x approaches positive or negative infinity.

If you can remember the graphs of $y=x, y=-x, y=x^{2}$, and $y=-x^{2}$, then you can remember the end behavior of all polynomial functions. End behavior of any polynomial function can be described using the "leading coefficient" and highest power.

Example 1: Describe the end behavior of the polynomial function using $\lim _{x \rightarrow \infty}$ and $\lim _{x \rightarrow-\infty}$. Confirm graphically.
a) $f(x)=3 x^{6}-5 x+3$
b) $g(x)=-x^{3}+7 x^{2}-8 x+9$
c) $h(x)=-2 x^{4}-10 x^{2}+87 x-1.07$
d) $k(x)=7 x^{3}-9$

Zeros of Polynomial Functions

Algebraic Analysis of Zeros: The x-intercepts of a function are also called the zeros. Factoring allows us to find these zeros algebraically. A polynomial of degree n has at most n zeros.

Example 2: Find the zeros of the function algebraically. Support graphically.
a) $f(x)=x^{3}-16 x$
b) $g(x)=3 x^{2}+x-4$
c) $h(x)=4 x^{3}-14 x^{2}+6 x$

Graphical Analysis of Zeros

Example 3: Graph $f(x)=2 x^{3}+3 x^{2}-7 x-6$ in a viewing window that shows all of its x-intercepts and find all of its zeros.

Example 4: List each zero and the power on each factor. Then graph each on your calculator. What do you notice?
a) $f(x)=x(x-3)^{2}$
b) $g(x)=-(x+2)^{3}(x-2)^{4}$
c) $h(x)=(x+1)(x-2)^{2}(x-4)^{3}$

Definition: Multiplicity of zeros:
The multiplicity of each zero is the number of times the factor occurs in the factored form of the polynomial.
At a zero with EVEN multiplicity, the graph of the function will \qquad .

At a zero with ODD multiplicity, the graph of the function will \qquad -

Example 5: State the degree and list the zeros of the polynomial function. State the multiplicity of each zero and whether the graph crosses the x-axis at the corresponding x-intercept. Using what you know about end behavior and the zeros of the polynomial function, sketch the function.
a) $f(x)=x(x+2)^{2}$
b) $h(x)=-(x-2)^{3}(x+7)^{2}$
c) $g(x)=(x-2)^{4}(x+6)^{2}$

Using Your Calculator’s Regression Abilities to Fit Data to a Polynomial

Example 6: Use cubic regression to fit a curve through the four points given in the table.

\boldsymbol{x}	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$
\boldsymbol{y}	10	15	21	33

Example 7: Use quartic regression to fit a curve through the five points given in the table.

x	0	4	5	7	13
y	-21	-19	-12	8	23

