Logic Lesson 2

Definition: Two statements are *Logically Equivalent* if the corresponding truth values for each of the possible combinations of true values are the same.

Let's look at the truth table for a statement, the converse of a statement, and the conjunction joining them both.

р	q	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \land (q \rightarrow p)$	$p \leftrightarrow q$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	Т	Т	T	Т

The statement $p \leftrightarrow q$ is called a *Biconditional Sentence*, or equivalence. We can write an equivalence in many ways. Here are a few examples...

- if p then q and if q then p ... " $(p \rightarrow q) \land (q \rightarrow p)$ "
- if p then q, and conversely
- p if and only if q
- p iff q (*iff* is an acceptable abbreviation for *if and only if*.)

Note: A definition is always an equivalence.

Contrapositive:

If you are given the conditional sentence "If p, then q", the new conditional sentence "If $\sim q$, then $\sim p$ " is called the contrapositive of the original statement. Look at their truth tables. What do you notice?

Complete the truth table...

р	q	$p \rightarrow q$	$\sim q \rightarrow \sim p$
Т	Т		
Т	F		
F	Т		
F	F		

Since $p \rightarrow q$ and $\sim q \rightarrow \sim p$ have the same values in the truth table, they are logically equivalent. This is useful in mathematics when trying to prove something indirectly. Instead of proving "*p implies q*", you can show that "*not q implies not p*".