Assignment for Logic Lesson 1

1. Which of these are statements?

a. 5 > 3 b. 2^3 c. 6 = 1 + 4 d. x + 2 = 6 e. Stop that man!

- 2. True or False?
 - A negation of: "Every rectangle is a square" is "Some rectangles are not squares"
 - If $p \wedge q$ is false then q must be false.
 - A negation of : "Every rectangle is a square" is "No rectangles are squares"
- 3. Tell whether a) $p \wedge q$ is true or false, b) $p \vee q$ is true or false
 - p: every triangle has 3 sides
 - q: every square has 4 right angles
- 4. Write the negation of the following:
 - a) $2+3 \neq 7$ b) Some geometry students take French c) $6^2-8<25$ d) 5>4+1 and $6\leq 3$
- 5. Tell whether each statement above is true or false.
- 6. Fill in the blanks.
- The negation of $p \wedge q$ is _____

The negation of a false statement is (always, sometimes, never) true. The symbol \land means ______. The symbol \lor means ______. The negation of $p \lor q$ is ______.

7. Complete the truth table for the following statement: $\sim p \lor \sim q$

р	q	$\sim p$	$\sim q$	$\sim p \lor \sim q$

- 8. Mark the hypothesis and the conclusion for each statement:
 - a) if it rains, then the streets get wet b) x = 2 if x^2
 - c) I save my allowance, if I can go to the movies d)

b) x = 2 if $x^2 = 4$ d) x + 2 > 6 follows from x > 4

9. Construct a truth table for $p \rightarrow q$

10. Assign p and q to the statements in such a way that $p \rightarrow q$ is true. If no such assignment can be made, write *impossible*.

a) $n^2 = 25$, n = 5b) A is on line BC, A is on segment BC c) Jim is old, Jim is a person d) B is between A and C, B is on segment AD

11. Complete the truth table to prove that $(p \land q) \rightarrow p$ is true for all combinations of truth values of p and q.

р	q	$p \wedge q$	$(p \land q) \to p$
Т	Т		
Т	F		
F	Т		
F	F		