AP Calculus

3.5 Worksheet

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

- 1. A spring is bobbing up and down so that its position at any time $t \ge 0$ is given by $s(t) = -4\sin t$.
 - a) What is the initial position of the spring?
 - b) Which way is the particle moving to start? Justify your response.
 - c) At $t = \frac{5\pi}{4}$, is the spring moving up or down? Justify your response.
 - d) Is the spring speeding up or slowing down at $t = \frac{5\pi}{4}$? Justify your response.
- 2. If $y = \sec x$, find $\frac{d^2y}{dx^2}$.

- 3. If $f(x) = \sin x$, find f'(x), f''(x), f'''(x), and $f^{(4)}(x)$. What do you think the function $f^{(100)}(x)$ is?
- $4. \lim_{h\to 0} \frac{\sin(x+h) \sin x}{h} =$
- A) 0

B) 1

- C) $\sin x$
- D) $\cos x$
- E) nonexistent

- 5. An equation of the line tangent to the graph of $y = x + \cos x$ at the point (0, 1) is
- A) y = 2x + 1
- B) y = x + 1
- C) y = x
- D) y = x 1
- E) y = 0

- 6. If $y = \tan x \cot x$, then $\frac{dy}{dx} =$
- A) $\sec x \csc x$
- B) $\sec x \csc x$
- C) $\sec x + \csc x$
- D) $\sec^2 x \csc^2 x$ E) $\sec^2 x \csc^2 x$

7.	If	$f(x) = \frac{x}{\tan x}$, then	$f'\left(\frac{\pi}{4}\right) =$
----	----	----------------------------------	----------------------------------

A) 2

- B) $\frac{1}{2}$
- C) $1 + \frac{\pi}{2}$ D) $\frac{\pi}{2} 1$ E) $1 \frac{\pi}{2}$

8. [Calculator] A particle moves along a line so that at time t, $0 \le t \le \pi$, its position is given by $s(t) = -4\cos t - \frac{t^2}{2} + 10$. What is the velocity of the particle when its acceleration is zero?

- A) -5.19
- B) 0.74
- C) 1.32
- D) 2.55
- E) 8.13

9. If
$$f(x) = \sin x$$
, then $f'(\frac{\pi}{3}) =$

- A) $-\frac{1}{2}$ B) $\frac{1}{2}$
- C) $\frac{\sqrt{2}}{2}$ D) $\frac{\sqrt{3}}{2}$ E) $\sqrt{3}$

10. [Calculator] A body is moving in simple harmonic motion (up/down) with position $s(t) = 3 + \cos t$, where $0 \le t < 2\pi$.

- a) Find the velocity, v(t), of the object at any time t.
- b) Find the zeros of v(t).
- c) Find the acceleration, a(t), of the object at any time t.
- d) Find the zeros of a(t).
- e) When is the object stopped? Justify your response.
- f) When does the object change direction? Justify your response.
- g) When does the object speed up? Justify your response.

11. Complete the following questions from the textbook: pages 146 – 147 #1, 4, 5, 9, 16, 22, 23, 27, 30, 32, 36, 37, 40, 41

... you should also begin reviewing for your chapter test 3.1 - 3.5: Review: #1 - 4, 43, 53, 57, 59 - 63, 71, 73This isn't due until the day of your exam.