AP Calculus

3.3 Worksheet

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

1. Solve for a and b in order for f(x) to be both continuous and differentiable at x = 1.

$$f(x) = \begin{cases} x^2 + 2 & ; x \le 1 \\ a(x - \frac{1}{x}) + b & ; x > 1 \end{cases}$$

2. Solve for a and b in order for g(x) to be both continuous and differentiable at x = 0.

$$g(x) = \begin{cases} ax+b & ; x > 0\\ 1-x+x^2 & ; x \le 0 \end{cases}$$

3. For a - d, find f'(2) given the following information:

$$g(2) = 3$$
 $g'(2) = -2$
 $h(2) = -1$ $h'(2) = 4$

a)
$$f(x) = 2g(x) + h(x)$$

b)
$$f(x) = 4 - h(x)$$

c)
$$f(x) = g(x)h(x)$$

d)
$$f(x) = \frac{g(x)}{h(x)}$$

4. Find all points where the graph of $y = x^4 - 5x^3 - 3x^2 + 13x + 10$ has a horizontal tangent line.

5. Find the equation of the tangent line to the graph of $f(x) = (x^3 - 3x + 1)(x + 2)$ at the point (1, -3).

6. Let $f(x) = (3x^3 + 4x^2)(2x^4 - 5x)$. Find f'(x) without using the product rule first, then using the product rule.

- 7. An equation of the line tangent to the graph of $y = \frac{2x+3}{3x-2}$ at the point (1, 5) is
- A) 13x y = 8

- B) 13x + y = 18 C) x 13y = 64 D) x + 13y = 66 E) -2x + 3y = 13
- 8. When x = 8, the rate at which $\sqrt[3]{x}$ is increasing is $\frac{1}{k}$ times the rate at which x is increasing. What is the value of k?
- A) 3

B) 4

C) 6

D) 8

- E) 12
- 9. Let $f(x) = \sqrt{x}$. If the rate of change of f at x = c is twice its rate of change at x = 1, then c =
- A) $\frac{1}{4}$

B) 1

C) 4

- D) $\frac{1}{\sqrt{2}}$
- E) $\frac{1}{2\sqrt{2}}$

10.	What is the instantaneous rate of change at $x = 2$ of the function f given by	$f(x) = \frac{x^2 - 2}{x - 1}$?
-----	--	----------------------------------

- A) -2
- B) $\frac{1}{6}$

- C) $\frac{1}{2}$
- D) 2

E) 6

11. Which of the following is an equation of the tangent line to $f(x) = x^4 + 2x^2$ at the point where f'(x) = 1?

- A) y = 8x 5
- B) y = x + 7
- C) y = x + .763 D) y = x .122
- E) y = x 2.146

12. At what point on the graph of $y = \frac{1}{2}x^2$ is the tangent line parallel to the line 2x - 4y = 3?

- A) $\left(\frac{1}{2}, \frac{1}{2}\right)$
- B) $(\frac{1}{2}, \frac{1}{8})$ C) $(1, -\frac{1}{4})$ D) $(1, \frac{1}{2})$
- E) (2,2)

13. If u, v, and w are nonzero differentiable functions, then the derivative of $\frac{uv}{w}$ is

- A) $\frac{uv'+u'v}{w'}$
- B) $\frac{u'v'w-uvw'}{w^2}$
- C) $\frac{uvw'-uv'w-u'vw}{w^2}$
- D) $\frac{u'vw + uv'w + uvw'}{w^2}$
- E) $\frac{uv'w + u'vw uvw'}{w^2}$

14. Let f be a differentiable function such that f(3) = 2 and f'(3) = 5. If the tangent line to the graph of f at x = 3 is used to find an approximation to a zero of f, that approximation is

- A) 0.4
- B) 0.5
- C) 2.6
- D) 3.4
- E) 5.5

15. Complete the following questions from the textbook: pages 124 – 126 #1 – 9 (odd), 14, 17, 18, 20, 21, 23, 26, 27, 30, 37 – 40, 42, 47, 56