2.2 Worksheet

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

1. Sketch a **function** that satisfies the stated conditions. Include any asymptotes.

$$\lim_{x \to 1} f(x) = 2$$

$$\lim_{x \to 5^{-}} f(x) = \infty$$

$$\lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to \infty} f\left(x\right) = -1$$

$$\lim_{x \to \infty} f(x) = 0$$

$$\lim_{x \to -2^{-}} f(x) = \infty$$

$$\lim_{x \to -2^+} f(x) = -\infty$$

2. Sketch a **function** that satisfies the stated conditions. Include any asymptotes.

$$\lim_{x \to 2} f\left(x\right) = -1$$

$$\lim_{x \to 4^{+}} f(x) = -\infty$$

$$\lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = 2$$

- 3. Answer the following questions:
 - a) How do you find horizontal asymptotes?
 - b) Which one of the parent functions have horizontal asymptotes? List the function(s) and asymptote(s)
 - c) How do you find vertical asymptotes?
 - d) Which one of the parent functions have vertical asymptotes? List the function(s) and asymptote(s)
 - e) When must you look for oblique (slanted) asymptotes? How do you find them?
- 4. Explain why there is no value L for which $\limsup x = L$.

- 5. Let $f(x) = \frac{\cos x}{x}$.
 - a) Find the domain and range of f.
 - b) Is f even, odd, or neither? Justify your response.
 - c) Find $\lim_{x\to\infty} f(x)$. Give a reason for your answer.
- 6. If *k* is a positive integer, then $\lim_{x\to\infty}\frac{x^k}{e^x}=?$ Explain your answer.
- 7. Evaluate the following limits:

a)
$$\lim_{x \to \infty} \frac{4n^3}{n^2 + 10000n} =$$

b)
$$\lim_{n \to \infty} \frac{3n^3 - 5n}{n^3 - 2n^2 + 1} =$$

c)
$$\lim_{x\to\infty} \left(5 - \frac{2}{x^2}\right) =$$

d)
$$\lim_{x\to\infty} \left(\frac{2}{x}+1\right) \left(\frac{5x^2-1}{x^2}\right)$$

e)
$$\lim_{x \to \infty} \frac{x \sin x + 2 \sin x}{2x^2}$$

f)
$$\lim_{x \to \infty} \frac{\cos\left(\frac{1}{x}\right)}{1 + \frac{1}{x}}$$

- 8. Investigate $\lim_{x\to\infty} \frac{3x-2}{\sqrt{2x^2+1}}$ and $\lim_{x\to\infty} \frac{3x-2}{\sqrt{2x^2+1}}$
- 9. Complete the following questions from the textbook: page 76 #3, 7, 15, 20, 25, 27, 30, 39, 41, 42, 43, 53, and 54