2.1 Worksheet

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

- 1. Describe the different ways you can *investigate* the existence of a limit.
- 2. What are the methods of *finding* (proving) the existence of a limit.
- 3. How can you find the average speed of an object?
- 4. Suppose an object moves along the *x*-axis with it's position function given by $x(t) = 5t^2 + 7t$, where *t* is measured in seconds.
 - a) What is the average speed from t = 2 to t = 4 seconds?
 - b) How fast is the object moving at exactly t = 4 seconds?
- 5. If a limit does not exist, there are 3 possible reasons why. List all three possible reasons why a limit may not exist.
- 6. Evaluate the following limits algebraically.

a)
$$\lim_{x \to 7} \sec\left(\frac{\pi x}{6}\right)$$

b)
$$\lim_{x \to 4} \sqrt[3]{x+4}$$

c)
$$\lim_{x \to 0} \frac{\frac{3}{4+x} - \frac{3}{4}}{x}$$

$$d) \lim_{x\to 0} \frac{\sqrt{2x+1}-1}{x}$$

e)
$$\lim_{x \to 0} \frac{\tan x}{x}$$

f)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin(x - \frac{\pi}{4})}{x - \frac{\pi}{4}}$$

7. If
$$f(x) = 2x^2 + 1$$
, then $\lim_{x \to 0} \frac{f(x) - f(0)}{x^2} =$

8. If
$$f(x) = \begin{cases} \ln x & \text{for } 0 < x \le 2 \\ x^2 \ln x & \text{for } 2 < x \le 4 \end{cases}$$
, then $\lim_{x \to 2} f(x) = 1$

9. If
$$a \neq 0$$
, then $\lim_{x \to a} \frac{x^2 - a^2}{x^4 - a^4} =$

10. Find
$$\lim_{x\to 3} \frac{x^2 - x - 6}{x - 3}$$
, if it exists.

- A) -1 B) 1
- C) 2 D) 5
- E) does not exist

11. Find
$$\lim_{x \to 2^{+}} f(x)$$
, if it exists, where $f(x) = \begin{cases} 3x+1, & x < 2 \\ \frac{5}{x+1}, & x \ge 2 \end{cases}$

- A) 5/3 B) 13/3

- C) 7 D) ∞ E) does not exist