

AP Calculus AB Review for Chapter 3.6 – 4.4 EXAM

- 1. Find $(f^{-1})'(2)$ if $f(x) = x^3 + 2x 1$.
- 2. Find the value of c guaranteed by the MVT for $f(x) = \sin x$ on the interval [4, 5] ... WITH CALCULATOR
- 3. Find the value of c guaranteed by the MVT for $f(x) = 4x^2 + 5x$ on the interval [-2, 1]
- 4. Given $y = x^3 3x$, find the following about the function AND sketch a graph.
 - a) zero(s)
 - b) intervals where the function is increasing/decreasing
 - c) Maximum/Minimums
 - d) intervals where the function is Concave Up/Concave Down/Points of Inflection
- 5. Given a(t) = 5, find v(t) and s(t), if v(2) = 10 and s(0) = 5.
- 6. Find the following derivatives
- a) $y = \sin^{-1}(x^2)$

- e) 5^{x^2+5}
- b) $y = \tan^{-1}(\sin x)$ c) $\sec^{-1}(\sqrt{x})$ d) e^{-x^2} f) $y = \log_4(\sin^{-1}(2x))$ g) $(\sin x)^{e^x}$
- 7. If $y'' = x^3 4x^2$, where is the function concave up, concave down, point of inflection?
- 8. What are the signs of g'(x), g''(x) at each point. Explain your reasoning.

9. Given the graph of f', when is the <u>function</u> increasing, decreasing, concave up, and concave down? Where does the function have a maximum? Where does the function have a minimum? Justify your responses.

- 10. Find y' for each function.
 - a) $y = 3^{\sin x}$
 - b) $y = e^{\ln x}$
- 11. Where do extrema occur? How do you determine whether or not the extrema is a maximum or minimum? What's the difference between absolute and relative extrema?
- 12. Find $\frac{dy}{dx}$ if $x^2y + 3y^2 = x$.
- 13. Find y'''(x) if $y = (4x+1)^7$
- 14. Find the maximum area of a rectangle inscribed under the curve $h(x) = \sqrt{25 x^2}$
- 15. If the derivative of the function is given by $g'(x) = 2\cos(x \frac{\pi}{6}) + 1$ on $[-2\pi, 2\pi]$, when is y increasing, decreasing, concave up, concave down? Where is the maximum(s), minimum(s), and point(s) of inflection? Use your calculator and the graph of the derivative to justify your responses to ALL answers.