
1. Where is f(x) NOT differentiable? Why?

Notecards!!!!

2. If $P(x) = 4x^3 - 7x - 10$ is the equation for profit on x items, find the marginal profit of the 12^{th} item.

3. When does f'(2) exist, for some function f(x). (limits....)

4. If $f(x) = \begin{cases} 2ax^2 + b & x \ge 1 \\ -3x + 4 & x < 1 \end{cases}$, find a and b so that f is both continuous and differentiable.

5. If $x(t) = t^2 - 8t + 12$ is a position of a particle moving along the x axis at time t, then

- a) Find the average velocity for the first 3 seconds.
- b) Find the velocity at t = 4 seconds.
- c) When is the object stopped?
- d) When is the acceleration of the object 0?
- 6. Find the equation of the *tangent line* to the curve $y = 2 \sin x \cos x$ at $x = \frac{\pi}{2}$.
- 8. Use the *alternative definition of the derivative* to find f'(2) if $f(x) = \frac{3}{x}$.
- 10. Given the following chart, find f'(3) and explain its meaning.

x = minutes	f(x) = \$
1	4
2	6
3	9
4	11

- e) When does the object change direction?
- f) When does the object slow down?
- g) When is the object moving left?

7. Find
$$\lim_{h\to 0} \frac{\cos\left(\frac{\pi}{2}+h\right)-\cos\left(\frac{\pi}{2}\right)}{h}$$
 ... Find $\lim_{h\to 0} \frac{\sqrt{4+h}-2}{h}$ (doing a lot of work here? ... you're missing the point!)

- 9. Use the *alternative definition of the derivative* to find f'(1) if $f(x) = 3x^2 + 5x$.
- 11. [Calculator] If $s(x) = \sqrt{x} \cos x$ is a position of a particle at time t, $0 \le t \le 2\pi$.
 - a) Find the velocity of the object at any time t.
 - b) Find the acceleration of the object at any time t.
 - c) When is the object stopped?
 - d) When does the object change direction?
 - f) When does the object speed up?
 - g) Find the zeros of s(x).
 - h) Find the zeros of v(x).
 - i) Find the zeros of a(x)
- 12. If f(x) has a derivative at x = 2, tell whether or not each of the following MUST be true?

a)
$$\lim_{x \to 2} f(x)$$
 exists

d)
$$f(x)$$
 is continuous at $x = 2$.

f)
$$\lim_{h\to 0} \frac{f(2+h)-f(2)}{h}$$
 exists.

b)
$$f'(2)$$
 exists

e)
$$\lim_{x\to 2} \frac{f(x)-f(2)}{x-2}$$
 exists.

c)
$$f''(2)$$
 exists.

Be able to sketch a graph of a derivative from the function.

Be able to state and use the <u>original and alternative definitions of a derivative</u> **YEAH** ... **that's the long way!**