
Calculus  
Chapter 2 Review Solutions 
 
I have done my best to make sure all the solutions are correct.  Inevitably, there seem to be typos.  If you do not 
agree/understand a solution, email me or find time to ask me about them BEFORE the exam. 
 
1.  Use direct substitution.  
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3.  The numerator and denominator have the same degree, so 
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4.  The numerator has a lower degree than the denominator, so 
2

3

5 3lim 0
3 2x

x x
x

 



 

5.  Multiply the denominator by 2
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6.  Take out the 1
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7.  Rewrite tan (5x) in terms of sine and cosine and multiply by 1/sin(3x) instead of dividing  … 
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Once the x is cancelled above, you can evaluate the limit … 
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8.  The numerator grows faster than the denominator, so 
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9.  The numerator and denominator grow at the same rate, so 
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10.  A graph of this (make a table if necessary) would show that the 
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11.   

x 1000 10000 100000 1000000 10000000 100000000 
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x

x
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 2.716923932 2.718145927 2.718268237 2.718280469 2.718281694 2.718281786 

 
Recognize the number?  It's e … Add this to your notecards

 

 under "Limits you should know". … yeah … those things you 
have to hand in before your test!    



12.  Since you're approaching 2 from both sides, pick two numbers close to 2 on both sides
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1.99 –499 
1.999 –4999 
2.001 5001 
2.01 501 

 
For questions 13 and 14, find ALL asymptotes (vertical, horizontal, and oblique) and justify your response. 
 
13.  This function has a vertical asymptote at x = 0 because as 0x  , ln x  .  (A parent function you should know) 
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 there is NOT a vertical asymptote at x = –2 (there’s a hole), but there IS a 

vertical asymptote at x = 1, since 
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16.  
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b)  Since there is a removable discontinuity (a hole) at x = –2, the limit as x approaches –2 exists, but since there is a 
vertical asymptote at x = –1, the limit does not exist as x approaches –1.   
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d)  There is a vertical asymptote at x = –1, since 
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e)  The only value of x less than –1 where g (x) is not continuous is x = –2.   
Since there is a removable discontinuity at x = –2, we just need to define the value of g (–2) to fill the hole.  Using the 
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17.  Using the function below, over what intervals does  lim
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The limit fails to exist at x = 0 and at x = 2 ( both are non-removable discontinuities) . 
The limit does exist at x = 1, even thought there is a hole (removable discontinuity). 
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18.  Let 3 4y x x  . 
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 b)  Slope at x = –1:   23 1 4 1    

 c)  When x = –1, y = 3 and the slope is –1:   3 1 1y x    

 d)  The slope of the normal line would be +1:   3 1 1y x    
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For questions 20 - 22, find the value of the parameter(s) that would make the function continuous.  Justify your 
response using the definition of continuity. 
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21.  In order to be continuous, the only problem occurs when x = 0.  To be continuous at x = 0,    
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This limit does not exist, since as 0h  , 3
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the problem, there is a vertical tangent line at x = 0.  … Try looking at a graph to convince yourself of this.  (You may want 
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Since k (9) = 1
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