For questions 1 and 2, sketch each without a calculator and write a statement describing the parent function and its transformation.

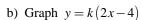
1.
$$y = -\log(x-1)$$

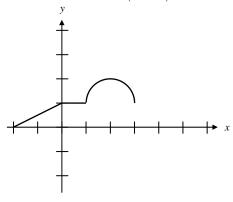
2.
$$y = \begin{cases} -x & -1 \le x < 0 \\ 4 & 0 \le x < 1 \\ x+5 & 1 \le x \le 2 \end{cases}$$

- 3. Prove whether the function is odd or even: $y = x^3 5x$
- 4. Change to base 10. $\log_7 14$
- 5. Find *k* in the equation 3y + kx = 4
 - a) to make the line horizontal
 - b) to make the line parallel to y = 3x + 5
- 6. Find the equation of the line perpendicular to y = -3x + 5 that goes through (4, 1).
- 7. Graph the parametric equation $x(t) = 2\sec(t)$, and change to a Cartesian equation.

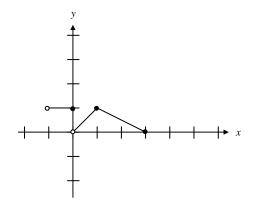
$$y(t) = \tan(t) - 1$$

8. Solve for *x* given the domain restrictions.


a)
$$\sin^{-1}\left(\frac{1}{2}\right) = x$$


b)
$$\sin x = \frac{1}{2} \text{ if } 0 \le x \le 2\pi$$

c)
$$\sin x = \frac{1}{2}$$
 if $-\infty < x < \infty$


9. k(x) is shown.

a) Graph
$$y = -2k(x)$$

10. h(x) is shown. Write the equation for h(x).

- 11. If $\ln(x) \ln(\frac{1}{x}) = 2$, solve for x.
- 12. If $f(x) = \frac{4}{x-1}$ and g(x) = 2x, then the solution set of f(g(x)) = g(f(x)) is
- A) $\frac{1}{3}$

- B) 2
- C) 3
- D) -1 and 2
- E) $\frac{1}{3}$ and 2

- 13. $\ln(x-2) < 0$ if and only if
- A) x < 3
- B) 0 < x < 3
- C) 2 < x < 3 D) x > 2
- E) x > 3

- 14. Which of the following define a function f for which f(-x) = -f(x)?
- A) $f(x) = x^2$ B) $f(x) = \sin x$ C) $f(x) = \cos x$ D) $f(x) = \log x$ E) $f(x) = e^x$