For questions 1-25, integrate each of the following indefinite integrals.

$$1. \int \frac{3x}{\sqrt[3]{x^2+3}} \, dx$$

$$2. \int \sec x \, dx$$

$$3. \int \frac{x-1}{x+1} dx$$

4.
$$\int \sin x \, dx$$

5.
$$\int b^{4x} dx$$
 where *b* is a constant

6.
$$\int \tan x \, dx$$

7.
$$\int \cot^2 x \, dx$$

$$8. \int \frac{\left(x+1\right)^2}{x^{\frac{1}{3}}} \, dx$$

$$9. \int \cos^2 x \, dx$$

$$10. \int \frac{dx}{4+9x^2}$$

11.
$$\int \cos t \, dt$$

12.
$$\int (\cos t - \sin t)^2 dt$$

$$13. \int \sin^2 x \, dx$$

$$14. \int \frac{dx}{x\sqrt{x^2 - 4}}$$

15.
$$\int \cot x \, dx$$

16.
$$\int \csc x \, dx$$

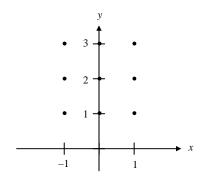
17.
$$\int \sqrt{x} (3-4x) dx$$

$$18. \int \frac{dx}{\sqrt{-x^2 - 2x}}$$

19.
$$\int \tan^2 x \, dx$$

$$20. \int \frac{e^x}{\sqrt{1 - e^{2x}}} \, dx$$

$$21. \int \csc^2 x \, dx$$


22.
$$\int xe^{-x^2+3} dx$$

23.
$$\int \sec^2 x \, dx$$

$$24. \int \frac{3+x}{x^2+1} \, dx$$

25. DERIVE (SHOW EVERY STEP) $y = y_0 e^{kt}$ from $\frac{dy}{dt} = ky$ and $y(0) = y_0$. [Should be on your notecards!]

- 26. Let f be a function with f(1) = 4 such that for all points (x, y) on the graph of f the slope is given by $\frac{3x^2 + 1}{2y}$.
 - a) Find the slope of the graph of f at the point where x = 1.
 - b) Write an equation for the line tangent to the graph of f at x = 1 and use it to approximate f(1.2)
 - c) Find f(x) by solving the separable differential equation $\frac{dy}{dx} = \frac{3x^2 + 1}{2y}$ with the initial condition f(1) = 4.
 - d) Use your solution from part c to find f(1.2)
- 27. If $\frac{dy}{dx} = y \sec^2 x \, dx$ and y = 5 when x = 0, then y =
 - A $e^{\tan x} + 4$
 - B $e^{\tan x} + 5$
 - C $5e^{\tan x}$
 - D $\tan x + 5$
 - E $\tan x + 5e^x$
- 28. Consider the differential equation given by $\frac{dy}{dx} = \frac{xy}{2}$.
 - a) On the axes provided below, sketch a slope field for the given differential equation at the nine points indicated.
 - b) Draw a particular solution if f(0) = 3

- c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 3. Use your solution to find f(0.2).
- 29. Complete the following questions from your textbook:

page 349: #2

page 373: #5, 7, 11, 13, 15, 17, 25, 27, 29, 31, 37, 38, 39, 57

page 376: #68, 69