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2. The Volume of a Sphere is given by V = %m‘a . Use differentials to estimate how much the volume will change when
the radius is increased from 2 cm to 2.05 cm. "
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3. A 6 foot tall man ﬁalks afarate of 5 ft/sea toward Ex streetlight that is 16 feet above the ground. At what rate is the
length of his shadow changing whien he is 10 feet from the base of the light?
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4. An observer 70 meters south of a railroad crossing watches an eastbound train traveling at 60 meters per second. At
how many meters per second is the train moving away from the observer 4 seconds after it passes through the intersection?

Aot = 60 guoatol] % + xF2 4™ Pe = 576 s
Fnd g sdon 5= 290 2x M = 29 “Ydt S
bom ity = 2o 2(240) (00) = 2.(259) - df'/d:t
£ ke kE 240, (e guo

e
5. A shadow of a 70 foot tall tree is cast on the gr%un% as thl sun goes down. Ifthe shadow is increasing 2 ft/min, find dx/d/c s
}lcﬂv_wf_ek_vzgﬁn from the tip of the shadow to the sun is changing when the shadow is 120 feet long?
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6. A dinghy is pulled toward a dock by a rope from the bow through aTing on the dock 6 feet above the bow as shown in
the figure below. The rope is hauled in at the rate of 2 ft/sec. Bl = ~2
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a) How fast is the boat approaching the dock when 10 ft of rope are out? when =1
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b) At what rate is angle 8 changing at that moment?
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'\? A particle moves from right to left along the parabolic curve y =~/—x in such a way that its x-coordinate (in meters)
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8. Charlie Brown is flying a kite (before it gets caught in the tree) at a height of 10 meters. The wind carries the kite
horizontally away from him at a rate of 7 m/s.

a) How fast is the distance between Charlie Brown and the kite changing when he has let out 70 meters of string?
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b) How fast is the angle of elevation between Charlie Brown and the kite changing at the same moment?
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9. A security camera is centered along a 90 foot long hallway that is 10 feet Wide. Tt is €asiest to design the camera with a
constant angular rate of rotation, but this results in a variable rate at which the images of the surveillance area are recorded.
To resolve this issue, the system was designed w1th a variable rate of rotation so the camera will scan the hallway at a
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a) If you were standing 20 feet to the right of the camera, how fast is the camera rotating? ~ hew x= 2 o, Uz
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b) If you are standing directly in front of the camera, how fast is the camera rotating? yhich
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10. A conical tank (with vertex down) is 14 feet across at the top and 8 feet deep. If water is flowing into the tank at a rate

of 24 cubic feet per minute, . find the rate of change of the depth of the water when the water is 3 feet deep.

(The volume of a cone is ¥ = 1mr’h) "
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