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6.1 ANTIDERIVATIVES AND SLOPE FIELDS 
 
Notecards from Section 6.1:  Slope Fields (Revisited);  Indefinite Integrals 
 
Indefinite Integrals 
 
In the previous chapter we dealt with definite integrals.  Definite integrals had limits of integration .  Indefinite integrals do not. 
 
The set of all antiderivatives of a function f (x) in the indefinite integral of  f  with respect to x and is denoted 

( )f x dxò  

 

Recall, that all antiderivatives differ by a constant, so if ( ) ( )'F x f x= , then ( ) ( )f x dx F x C= +ò , where C is the constant of 

integration.  The following table gives a list of results you should already be familiar with. 
 
Integral Formulas  
 

1.  Power Rule for 1n ¹- :  
1

1

n
n x

x dx C
n

+

= +
+ò  

2.  Rule for n = –1:  
1

lndx x C
x

= +ò  

3.  
kx

kx e
e dx C

k
= +ò  

4.  ( )
( )cos

sin
kx

kx dx C
k

-
= +ò  

5.  ( )
( )sin

cos
kx

kx dx C
k

= +ò  

6.  ( ) ( )2sec tanx dx x C= +ò  

 

7.  ( ) ( )2csc cotx dx x C=- +ò  

8.  ( ) ( ) ( )sec tan secx x dx x C= +ò  

9.  ( ) ( ) ( )csc cot cscx x dx x C=- +ò  

10.  ( )1
2

tan
1

dx
x C

x
-= +

+ò  

11.  ( )1

2
sin

1

dx
x C

x

-= +
-

ò  

12.  
ln

x
x a

a dx C
a

= +ò  … where a is a constant

 
 
Example 1:  Evaluate each integral. 
 

 a)  ( )3 33 1 xx x e dx-- + - +ò     b)  ( )3sin sin 3x x dx-ò  

 
 
 
 
 
 
 
 
 
Differential Equations 
 
A differential equation is an equation containing a derivative.  Just like in Algebra, when you want to solve an equation, you 
use an inverse operation.  To "undo" a derivative we take an _____________________________________. 
Recall, that a function can have many antiderivatives, all of which vary by a ________________________. 
 
Solving a differential equation involves finding a unique equation that satisfies some initial conditions or initial values. 
The order of a differential equation is the order of the highest derivative involved in the equation. 
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Example 2:  Solve sin
dy

x
dx

=  by separation of variables if y (0) = 2. 

 
 
 
 
 
 
 
 
A Graphical Look at Differential Equations 
 

A slope field (or direction field) for the first order differential equation ( ),
dy

f x y
dx

=  is a plot of short line segments with slope 

( ),f x y  for a lattice of points (x, y) in the plane. 

 

Example 3:  On the diagram below, plot the slope field of the differential equation 2
dy

y
dx

= . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 4:  Suppose that you know that the point (0, –1) is on a particular solution of the differential equation above.  By 
following slopes, draw on the diagrams above what you think the particular solution look like.  (:  The graph should follow the 
pattern of the slope field, but may go between the points rather than through them.) 
 

Example 5:  Solve the differential equation  2
dy

y
dx

=  from the previous example by first separating the variables.  Find the 

particular solution that contains the point given in the last example.  Does your solution make sense when compared to the graph 
of the slope field? 
 
 
 
 
 

1 

1 

x 

y 
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6.2 INTEGRATION BY SUBSTITUTION 
 
Notecards from Section 6.2:  U – Substitution; Integrals of TRIG and TRIG^2 Functions; Algebraic Techniques of 
Integration 
 
Up to this point you have been finding antiderivatives of functions that followed directly from their derivative rules.  
Today we learn how to undo a function that used the chain rule to find the derivative.  First, a quick review of the 
Chain Rule …  

( )( )( ) ( )( ) ( )' '
d

f g x f g x g x
dx

= ⋅ . 

 
   
       
 
The Chain Rule gives us a product of two factors:  the “outside derivative” and the “inside derivative.”  So, if a 
function has this form then it has an antiderivative. 
 

Example 1:  Use the Chain Rule to differentiate ( )124( ) 3 5f x x= - . 

 
 
Example 2:  Tell whether or not each antiderivative is going to undo a chain rule. 

 

a)  ( )32 1 2x x dx-ò  

 
 

b)  2 33 2x x dx+ò  

 
 

c)  ( )3 5x x dx-ò

 
Substitution Method 

Let u be the “inside function” and ( )'du u x dx=  

 
It is important to note, that with substitution, the goal is to substitute ALL values of the integrand with either u or du.  
Any "extras" must be accounted for, or substitution will NOT work! 
 
Indefinite Integration with Substitution 
 

Example 3:  3 4 2x x dx+ò  

 
 
 
 
 

Example 4:  ( ) ( )2sin 3 cos 3x x dxò  

 
 
 
 
 

Example 5:  
2 2

x
dx

x +ò  

 
 
 
 
 
 

Inside derivative 

 

Outside derivative
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Definite Integrals with Substitution 
 
Indefinite Integrals needed a “ +C ” at the end of every antiderivative … Definite Integrals have limits.   
 
If you change the variables, the limits still refer to the original variable … How will you decide to deal with those 
limits? … you have two choices … 
 
 #1:  Leave the limits in terms of the original variable and integrate like you did for the indefinite integrals.  
Once you have returned all variables back to the original letter, you can plug in the upper limits and lower limits. 
 
 #2:  Using the rule for the change of variables, change the limits with the same rule … then you never need 
to return to the original variable. 
 
:  THE LIMITS MUST MATCH THE VARIABLE BEING USED, OR THERE MUST BE SOME NOTATION 
TO INDICATE THAT THE LIMITS BEING USED ARE DIFFERENT FROM THE VARIABLE BEING USED! 
 
Method 1:  Use substitution to evaluate the integral, but do NOT change the upper and lower limits.   

Example 6:  Compute 
1

2

0

1x x dx-ò . 

 
 
 
 
 
 
 
 
 
 
Method 2:  Use substitution to evaluate the integral, and change the limits using the substitution rule you created. 
 

Example 7:  Evaluate 
cos

4 3sin

x
dx

x

p

p- +ò . 

 
 
 
 
 
 
 
 

Example 8:  Compute 
34

20

tan

cos
d

p q
q

qò . 
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Algebraic Techniques 
 
When substitution doesn’t work, you sometimes just need to “massage” the problem into a form that will work using 
some algebraic techniques.  
 
Long Division … when the numerator has a degree greater than or equal to the denominator 
 

Example 9:  
2

2

1

1

x
dx

x

-
+ò  

 
 
 
 
 
 
 
 
 
Expand … when the “inside” doesn’t have a derivative on the outside , try expanding the function 
 

Example 10:  ( )2
sin cosx x dx+ò  

 
 
 
 
 
 
 
 
 
 
Complete the Square … useful when you have a x2 and x term in the denominator but no x term in the numerator. 
 

Example 11:  
2

2

6 10

dx

x x- +ò  

 
 
 
 
 
 
 
 
 
 
Separate the numerator … when you have more than one term in the numerator 
 

Example 12:  
2

3 2

1

x
dx

x

+

-
ò  
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Integrals of Trigonometric and Squared Trigonometric Functions 
 
First, a few identities from trigonometry that you may or may not remember. 
 
1.  2 21 tan secx x+ =  … everyone remembers this one, right?!   
 

2.  ( ) 2cos 2 2 cos 1x x= -  … which can be rewritten to 
( )2 1 cos 2

cos
2

x
x

+
=  

 

3.  ( ) 2cos 2 1 2 sinx x= -  … which can be rewritten to 
( )2 1 cos 2

sin
2

x
x

-
=  

 
Can you integrate all of these functions?  The first 4 should already be known. 
 

sin x dxò  

 

cos x dxò  

 

2sec x dxò  

 

2csc x dxò  

 
 

tan x dxò  

 
 

cot x dxò  

 
 
 
 

csc x dxò  

 
 

sec x dxò

 
 
 
 
 
 

2sin x dxò  

 
 

2cos x dxò  

 
 
 
 
 
 

2tan x dxò  

 
 

2cot x dxò  
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Examples with Inverse Trigonometric Functions 
 

Example 13:  
24

dx

x-
ò  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 14:  
24 9

dx

x x -
ò  
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6.4 EXPONENTIAL GROWTH AND DECAY 
 
Notecards from Section 6.4:  Derivation of an exponential function 
 
In many applications, the rate of change of a variable y is proportional to the value of y.  If y is a function of time t, 
we can express this statement as 
 
 
 
Example 1:  Find the solution to this differential equation given the initial condition that 0y y=  when t = 0. 

(This is the derivation of an exponential function … see notecards … AND you want to know how to do it yourself!) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exponential Growth and Decay Model 
 

If y changes at a rate proportional to the amount present ( dy
dt ky= ) and 0y y=  when t = 0, then  

0
kty y e=  

where k is the proportional constant.   
 
Exponential growth occurs when 0k > , and exponential decay occurs when 0k < . 
 
 
Example 2:  The rate of change of y is proportional to y.  When t = 0, y = 2.  When t = 2, y = 4.  What is the value of 
y when t = 3? 
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Example 3:  Newton’s Law of Cooling:  Newton’s Law of Cooling states that the 
rate of change in the temperature of an object is proportional to the difference 
between the object’s temperature and the temperature in the surrounding medium.  
A detective finds a murder victim at 9 am.  The temperature of the body is 
measured at 90.3 F.  One hour later, the temperature of the body is 89.0 F.  The 
temperature of the room has been maintained at a constant 68 F.   
 
 (a)  Assuming the temperature, T, of the body obeys Newton’s Law of 
Cooling, write a differential equation for T. 
 
 
 
 (b)  Solve the differential equation to estimate the time the murder occurred. 
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