3.9 Derivatives of Exponential and Logarithmic Functions

Derivative of \(f(x) = e^x \)

\[
\frac{d}{dx}[e^x] = e^x
\]

Proof: Prove this derivative using the limit definition of the derivative and the fact that \(\lim_{h \to 0} \frac{e^h - 1}{h} = 1 \).

The Chain Rule and \(f(x) = e^x \)

If \(u \) is a differentiable function of \(x \), then

\[
\frac{d}{dx}[e^u] = e^u \cdot \frac{du}{dx}.
\]

Example: Find \(\frac{d}{dx}[e^{2x-1}] \)

Example: Find \(\frac{d}{dx}[e^{-x}] \)

Example: Suppose \(10 = e^w + x^2 + y^2 \), find \(\frac{dy}{dx} \).
3.9 Derivatives of Exponential and Logarithmic Functions

Example: Find \(g'(t) \) if \(g(t) = t^e(\mathrm{e}^t) \)

Derivative of \(f(x) = \ln x \)

\[
\frac{d}{dx}[\ln x] = \frac{1}{x}
\]

Proof:

The Chain Rule and \(f(x) = \ln x \)

If \(u \) is a differentiable function of \(x \), then

\[
\frac{d}{dx}[\ln u] = \frac{1}{u} \frac{du}{dx} \quad \text{or} \quad \frac{d}{dx}[\ln u] = \frac{u'}{u}
\]

Example: Let \(y = \ln(2x+2) \). Find \(y' \).

Example: Let \(f(x) = \ln(\tan x) \). Find \(f'(x) \)

Example: Find \(g'(t) \) if \(g(t) = \ln(\ln t) \).
3.9 Derivatives of Exponential and Logarithmic Functions

Example: If \(y = \tan u \), \(u = v - \frac{1}{v} \), and \(v = \ln x \), what is the value of \(\frac{dy}{dx} \) at \(x = e \)?

A 0 B \(\frac{1}{v} \) C 1 D \(\frac{2}{v^2} \) E \(\sec^2(e) \)

We can use the properties of logarithms to simplify some problems. Here’s a quick refresher on those properties.

| Definition of a logarithm: \(\log_b a = e \leftrightarrow b^a = e \) |
| 3 Rules of Logarithms: |
| 1. \(\log_b (MN) = \log_b (M) + \log_b (N) \) |
| 2. \(\log_b \left(\frac{M}{N} \right) = \log_b (M) - \log_b (N) \) |
| 3. \(\log_b (M^k) = k \cdot \log_b (M) \) |

Change of Base Formula: \(\log_b a = \frac{\log a}{\log b} \) or \(\frac{\ln a}{\ln b} \)

Example: Use the properties of logarithms to rewrite the function, then find the derivative of \(y = \log_5 \sqrt{x} \).

Example: Find \(h'(x) \) if \(h(x) = \ln \left(\frac{1 + e^x}{1 - e^x} \right) \).
Logarithmic Differentiation

By utilizing the rules of logarithms and implicit differentiation, you can turn an exponential equation into an equation involving logarithms that is usually easier to deal with.

Example: Find \(\frac{dy}{dx} \) if \(y = 2^x \).

Example: Find \(\frac{dy}{dx} \) if \(y = 3^x \).

Example: Make a conjecture on \(\frac{d}{dx} \left[a^x \right] \), where \(a \) is a constant greater than 0 and not equal to 1.

Derivative of \(a^x \)

If \(a > 0 \) and \(a \neq 1 \) and \(u \) is a differentiable function of \(x \), then

\[
\frac{d}{dx} \left[a^x \right] = \ln a \cdot a^x \frac{du}{dx}
\]

Example: Use the technique of logarithmic differentiation to find \(\frac{dy}{dx} \) for \(y = \frac{x\sqrt{x^2 + 1}}{(x+1)^3} \).

Example: Find the first derivative for \(y = x^{\ln x} \)
Example: Find y' if $y = \frac{x^3}{3^x}$ first using the quotient rule, then using logarithmic differentiation.

Challenge: Solve the following without using a calculator at all:
If $f(x) = (x^2 + 1)^{(2-3x)}$, then $f'(1) =$

A $-\frac{1}{2}\ln(8e)$ B $-\ln(8e)$ C $-\frac{3}{2}\ln(2)$ D $-\frac{1}{2}$ E $\frac{1}{8}$

Notecards from Section 3.9: Derivatives of Exponential Functions, Derivatives of Logarithmic Functions, Logarithmic Differentiation