Honors Algebra 2 Chapter 4 Review

	1 (:11	
Name_	Cofield	
Block		

Non-calculator

1. Simplify using the properties of exponents. Leave answers as fractions where applicable. (Rev of Exp)

a)
$$(81^{\frac{5}{2}})^{\frac{1}{5}}$$

$$= 81^{\frac{1}{2}} = 9$$

b)
$$3^{\frac{1}{7}} \cdot 27^{\frac{-2}{14}}$$

$$= 3^{\frac{1}{7}} \cdot 27^{\frac{1}{14}}$$

$$= 3^{\frac{1}{7}} \cdot (3^{3})^{\frac{1}{7}}$$

$$= 3^{\frac{1}{7}} \cdot (3^{3})^{\frac{1}{7}}$$

c).
$$\frac{36^{\frac{3}{4}}}{6^{\frac{1}{4}}} = \frac{(b^2)^{\frac{3}{4}}}{b^{\frac{1}{4}}}$$
$$= \frac{b^{\frac{1}{4}}}{b^{\frac{1}{4}}} = \begin{bmatrix} b^{\frac{5}{4}} \\ b \end{bmatrix}$$

a)
$$(81^{\frac{5}{2}})^{\frac{1}{5}}$$
 b) $3^{\frac{7}{2}} \cdot 27^{\frac{-2}{14}}$ $3^{\frac{7}{1}} \cdot 3^{\frac{3}{1}}$ c). $\frac{36^{\frac{3}{4}}}{6^{\frac{1}{4}}} = \frac{(L^2)^{\frac{3}{4}}}{L^{\frac{1}{4}}}$ d). $4^{\frac{-13}{4}} \cdot 4^{\frac{1}{5}} = \frac{-\frac{L5}{20}}{L^{\frac{1}{4}}} \cdot 4^{\frac{1}{20}}$ $= 3^{\frac{1}{1}} \cdot (3^3)^{\frac{1}{7}} = 3^{\frac{1}{7}} \cdot (3^3)^{\frac{1}{7}} = 3^{\frac{1}{7}}$

e)
$$\left(\frac{1}{125}\right)^{\frac{2}{3}} = \left[\left(\frac{1}{125}\right)^{\frac{1}{3}}\right]^{2}$$

= $\left(\frac{1}{5}\right)^{2} = \boxed{\frac{1}{35}}$

f)
$$(4^{12})^{\frac{1}{3}} = 4^{\frac{12}{3}}$$

= $4^{\frac{1}{3}}$

g)
$$16^{-\frac{3}{4}} = (16^{\frac{1}{4}})^{-\frac{3}{4}}$$

= $3^{-\frac{3}{4}}$

a. Write an equation and sketch a graph (by hand) to model this situation. List what each variable stands for.

M = H of minutes

b. Tell whether this equation represents exponential growth linear growth, or neither.

- 3. For each function: (4-2 parts a & b; 4-3 parts c & d)
 - i) Graph the function and its inverse in the same coordinate plane.
 - ii) Find an equation for $f^{-1}(x)$

$$c) \quad f(x) = 3^x$$

$$\frac{f(x)}{(0,1)}$$

d)
$$f(x) = 4\left(\frac{1}{2}\right)^x$$
 $\frac{f(x)}{(0,4)}$

$$\frac{f'(x)}{(4,0)} \qquad \frac{f'(x)}{(4,0)}$$

4. Write each equation in logarithmic form. (4-3)

a)
$$2^5 = 32$$
 $log_2 32 = 5$

b)
$$4^{\frac{1}{12}} = \frac{1}{2}$$
 $\log_4 \frac{1}{a} = -\frac{1}{a}$

a)
$$2^5 = 32$$
 $\log_2 32 = 5$ b) $4^{\frac{1}{2}} = \frac{1}{2}$ $\log_4 \frac{1}{a} = -\frac{1}{a}$ c) $(0.5)^3 = 0.125$ $\log_{.5} 0.125 = 3$

5. Write each equation in exponential form. (4-3)

a)
$$\ln 148.41 \approx 5$$
 b) $\log_{\frac{1}{2}} 32 = -5$

$$e^{5} = 148.41$$
 $(\frac{1}{2})^{5} = 32$

c)
$$\log_{\frac{1}{25}} 125 = -\frac{3}{2}$$

$$(\frac{1}{25})^{-3/2} = 1.35$$

6. Evaluate each logarithm. (4-3)

a)
$$\log_6 36 = \chi$$

b)
$$\log_{27} 3 = \chi$$

c)
$$\ln e^4 = 4$$

c)
$$\ln e^4 = 4$$
 d) $\log 10^{0.1x} = 0.1x$

$$\log_{27} 3 = \chi$$

$$27^{X} = 3$$

$$(3^3)^{x} = 3$$

$$3^{3x} = 3^{1}$$

$$3x = 1$$
 $x = \frac{1}{3}$

d)
$$\log_4 1 = 0$$
 e) $\log_{1.5} 2.25 = \chi$

e)
$$\log_{15} 2.25 = x$$

$$1.5^{\times} = 2.25$$

$$(\frac{3}{2})^{x} = \frac{9}{4}$$

f)
$$\log_{81} \frac{1}{2} = X$$

f)
$$\log_{81} \frac{1}{3} = X$$
 g) $\ln e^{-2} = \boxed{-2}$

$$(3^{+})^{X} = 3^{-1}$$

 $3^{+}X = 3^{-1}$

7. Identify the parent function and describe how it was transformed into the given function. Determine the asymptote. Graph the function by hand including 2 key points and a dashed line for the asymptote.

(4-7)

a) $g(x) = 0.5(3)^x - 2$

HA: 4=-2

(2,-1)

(3, -2.7)

HA: 4=0

parent: y=lnx

(1,0)

(2.7.1)

(x,y) -> (x+2, 5y-3)

left 2

VA: X = 0 $(x,y) \rightarrow (x-2,y)$

(-1,0)

(O.T.1)

VA: x = -2

- 8. Rewrite the function given the transformation(s) below. (4-7)
 - a) $f(x) = 4^x$ is reflected across the x-axis and moved 3 units down and 4 units right. $f(x) = -4^{(x-4)} 3$

$$f(x) = -4^{(x-4)} - 3$$

b) $f(x) = \ln x$ is compressed horizontally by a factor of $\frac{1}{2}$ and moved 2 units up.

$$f(x) = \ln(ax) + 2$$

c) $f(x) = 1.3^x$ is horizontally stretched by a factor of 1.5, reflected across the x-axis, and stretch 3/2 translated 1 units down. $f(x) = -1.3^{(\frac{2}{3}x)} - 1$

d) $f(x) = \log x$ is translated 6 units right, vertically compressed by a factor of $\frac{1}{2}$ and translated 8 $f(x) = \pm \log(x-16) + 8$ units up.

Calculator Allowed:

- 9. Evaluate: (4-4 and 4-6) Use change of base or log BASE on calculator
 - a) \log_{2} , 30 \leftarrow
- b) In 3.78 = 1.330
- c) log 78 = 1.892

10. Solve and check you answer. (4-5 and 4-6) you may solve log equations graphically or algebraically.

$$e^{x-1} = 1.6$$

 $lne^{x-1} = ln 1.6$
 $x = ln 1.6 + 1 = 1.470$

11. Solve the following inequalities. Sketch a picture to explain your answer. (4-5 and 4-6)

b) $\ln(x) \otimes 5 - 3x$ $y_2 = 5 - 3x$ c) $3^{x-1} \otimes 8$ $y_1 = 3^{x-1}$ for what values of x is the of x is the natural log belowthe line? 04X41.526

12. The table below shows the profits for several years, in thousands of dollars, of a company that produces computer software. (4-8)

x = years after 1982	0	2	4	6	8	10	12
P = profits (thousand \$)	452	761	1218	2067	3582	5205	8349

- a) Find an exponential model for the data.
- b) Use the model to estimate the profit in the year 1999.

(omit 2013)

13. If \$7400 is deposited in an account at the bank and earns 11% annual interest, compounded continuously, what is the amount in the account, rounded to the nearest dollar, after 5 years? (4-6)

and not 1+90 like we use for y=abx

14. A mechanical engineer earned a yearly salary of \$50,000 in 1990 and has averaged a 6.2% raise

- 17. When calibrating a spring scale, you need to know how far the spring stretches for various weights. Hooke's law states that the length a spring stretches is proportional to the weight attached to it. A model for one scale is l=0.5w+3 where I is the total length (in inches) of the stretched spring and w is the weight (in pounds) of the object. (4-2)
 - a) Find the inverse of the given model. * Cannot switch variables for word problem!

$$L = 0.5W + 3$$

 $L - 3 = 0.5W$
 $2(L - 3) = 2(0.5W)$

$$W=2(L-3)$$
 or $W=2L-6$

b) If you place a weight on the scale and the spring stretches to a total length of 6.5 inches, how heavy is the weight? $\mu = 2 L - L$

$$W = 2(6.5) - 6$$

$$W = 13 - 6$$

$$W = 7 pounds$$

18. The table below shows the growth in the number of radio stations after 1955. (4-8)

Find an exponential regression equation using your calculator. Round a and b to three decimal places. Use your model to predict the number of radio stations in 2001.

Years since 1955	0	5	10	15
Number of Radio Stations	3211	4133	5249	6760

omit 2013