Honors Algebra 2 Chapter 3 Review

NON-CALCULATOR

3-1 In 1-2, determine if the following is a polynomial or not. If it is, put it in standard form and give the degree. If it is not, explain why not.

1)
$$-5x^2 - 7x^5 + 8 + 3x^4$$

2)
$$15x + 4\sqrt{x^3} - x^5$$

3:1-2 In 3-5, perform the indicated operation.

3)
$$(3x^3 + 2x^2 - 4x + 1) + (-6x^3 + 11x + 6)$$

3)
$$(3x^3 + 2x^2 - 4x + 1) + (-6x^3 + 11x + 6)$$
 4) $(8 - 6x^2 + x^3 - x + 7x^4) - (3 - 5x^3 + 2x + 4x^4)$

5)
$$(-4x^3 + 2x - 9)(5x^2 - 3x + 7)$$

3-3 6) Divide using long division:
$$\frac{9x^3 - 4x + 5}{3x - 1}$$

Use synthetic substitution to evaluate the given polynomial for x = -23-3

7)
$$6x^4 - 3x^3 - 12x^2 - 5x + 6$$

8)
$$x^4 - 3x^3 - 11x^2 - 9$$

9) Factor each expression 3-4

a)
$$27x^6 + 125$$

b)
$$y^3 + 7y^2 + 2y + 14$$
 c) $6x^4 - 23x^2 + 20$

c)
$$6x^4 - 23x^2 + 20$$

10) Determine all the solutions of $f(x) = 4x^3 + 12x^2 - x - 3$ by factoring. 3-5

3:4-6 Find all real and imaginary zeros of each function.

11)
$$f(x) = (2x-3)(4-x)(x+7)$$

11)
$$f(x) = (2x-3)(4-x)(x+7)$$
 12) $f(x) = 2x^3 + x^2 - 13x + 6$; given -3 is a zero

13)
$$f(x) = 5x^4 + 3x^3 + 3x^2 + 3x - 2$$
; given -1 and $\frac{2}{5}$ are zeros.

14). Write the simplest polynomial function in factored form with the given zeros. 3-6

a) zeros of
$$-\frac{6}{5}$$
 and 2 (multiplicity of 2) b) zeros of 3 and $\sqrt{2}$ c) zeros of 5 and -3*i*

b) zeros of 3 and
$$\sqrt{2}\,$$

For the graphs below, identify whether the function has an even or odd degree and positive or negative leading coefficient. Also, identify the zeros and their multiplicity.

- 3:6-7 17) Can a 5th degree polynomial...
 - a) have 4 turning points? Explain.
 - b) have 6 zeros? Explain.
 - c) have exactly 2 real zeros of multiplicity 1? Explain.
- 3-7 For questions 18-19, find each of the following for the given function:
 - a) List the degree.
 - b) Describe the end behavior using infinity notation.
 - c) Find the zeros (including their multiplicity).
 - d) Based on the information from parts (a) through (c), sketch a graph of the function. Your sketch should have a scale on the x-axis only.

18)
$$f(x) = -2x(x+3)(x-4)^2$$

19)
$$f(x) = x^3 + 3x^2 - 9x - 27$$

3-8 20) Consider the parent function $f(x) = x^3$. Rewrite given the following transformations and then sketch the transformed graph:

Vertical Stretch by a factor of 3 followed by a horizontal translation 2 units right and a vertical translation 2 units up.

3-8 21) Consider the parent function $f(x) = x^4$. Rewrite given the following transformations and then sketch the transformed graph:

Reflection across the x-axis followed by a horizontal compression by a factor of $\frac{1}{4}$.

CALCULATOR ALLOWED

3-2 22) You are making an open box to hold paper clips out of a piece of cardboard that is 5 inches by 8 inches. The box will be formed by making an x inch by x inch square cut out of the corners as shown in the diagram and folding up the sides. You want the box to have the greatest volume possible.

- a) Write an equation for the Volume of the box as a function of the length of the cut, x.
- b) Use a graphing calculator to find how long you should make the cuts. Explain your reasoning.
- c) What is the maximum volume of the box?
- d) What will the dimensions of the finished box be?

3-7 Graph the polynomial to find all local minimum(s) and maximum(s). Then give the domain and range.

23)
$$f(x) = 2x^6 + 10x^3 - 7x + 3$$

24)
$$f(x) = -x^5 + 6x^3 - 5x - 3$$

3-9 25) Find and verify all zeros of the function. SHOW ALL WORK!!!

$$y = 2x^3 + 3x^2 - 3x + 5$$

3-9 26) The table shows the number of sandwiches sold each day at ta deli over 5 days.

Day	0	1	2	3	4	5
Sandwiches	196	57	72	101	89	66

- a) Determine the degree of the polynomial that would fit the data. Explain how you know.
- b) Write a polynomial function for the data.
- c) Use your function from part b to determine the number of sandwiches expected to be sold on day 6.